This page documents the BIDS suffixes currently supported by the default configuration of bids2nf (bids2nf.yaml
). You can extend the configuration to support your own data structures.
Plain Sets¶
Plain sets define simple collections of files that do not require special grouping logic.
eeg¶
Electroencephalography
Electroencephalography recording data.
⌬ Hover to see the diagram legend
Example usage within a process
// Access json file:
bids_channel['eeg']['json']
// → eeg_cbm/sub-cbm001/eeg/sub-cbm001_task-protmap_eeg.json
// Access edf file:
bids_channel['eeg']['edf']
// → eeg_cbm/sub-cbm001/eeg/sub-cbm001_task-protmap_eeg.edf
channels¶
Channels File
Channel information.
⌬ Hover to see the diagram legend
Example usage within a process
// Access tsv file:
bids_channel['channels']['tsv']
// → eeg_cbm/sub-cbm001/eeg/sub-cbm001_task-protmap_channels.tsv
dwi¶
Diffusion-weighted image
Diffusion-weighted imaging contrast (specialized T2 weighting).
⌬ Hover to see the diagram legend
Example usage within a process
// Access nii file:
bids_channel['dwi']['nii']
// → ds-dwi/sub-01/dwi/sub-01_dwi.nii
// Access json file:
bids_channel['dwi']['json']
// → ds-dwi/sub-01/dwi/sub-01_dwi.json
// Access bval file:
bids_channel['dwi']['bval']
// → ds-dwi/sub-01/dwi/sub-01_dwi.bval
// Access bvec file:
bids_channel['dwi']['bvec']
// → ds-dwi/sub-01/dwi/sub-01_dwi.bvec
sbref¶
Single-band reference image
Single-band reference for one or more multi-band dwi
images.
⌬ Hover to see the diagram legend
Example usage within a process
// Access nii file:
bids_channel['sbref']['nii']
// → ds-dwi4/sub-01/ses-005/dwi/sub-01_ses-005_dir-PA_sbref.nii.gz
// Access json file:
bids_channel['sbref']['json']
// → ds-dwi4/sub-01/ses-005/dwi/sub-01_ses-005_dir-PA_sbref.json
T1w¶
T1-weighted image
In arbitrary units (arbitrary).
The contrast of these images is mainly determined by spatial variations in
the longitudinal relaxation time of the imaged specimen.
In spin-echo sequences this contrast is achieved at relatively short
repetition and echo times.
To achieve this weighting in gradient-echo images, again, short repetition
and echo times are selected; however, at relatively large flip angles.
Another common approach to increase T1 weighting in gradient-echo images is
to add an inversion preparation block to the beginning of the imaging
sequence (for example, TurboFLASH
or MP-RAGE
).
⌬ Hover to see the diagram legend
Example usage within a process
// Access nii file:
bids_channel['T1w']['nii']
// → ds-dwi/sub-01/anat/sub-01_T1w.nii.gz
// Access json file:
bids_channel['T1w']['json']
// → ds-dwi/sub-01/anat/sub-01_T1w.json
T2w¶
T2-weighted image
In arbitrary units (arbitrary). The contrast of these images is mainly determined by spatial variations in the (true) transverse relaxation time of the imaged specimen. In spin-echo sequences this contrast is achieved at relatively long repetition and echo times. Generally, gradient echo sequences are not the most suitable option for achieving T2 weighting, as their contrast natively depends on T2-star rather than on T2.
⌬ Hover to see the diagram legend
Example usage within a process
// Access nii file:
bids_channel['T2w']['nii']
// → ds-dwi4/sub-01/ses-005/anat/sub-01_ses-005_rec-norm_T2w.nii.gz
// Access json file:
bids_channel['T2w']['json']
// → ds-dwi4/sub-01/ses-005/anat/sub-01_ses-005_rec-norm_T2w.json
T2starw¶
T2star weighted image
In arbitrary units (arbitrary). The contrast of these images is mainly determined by spatial variations in the (observed) transverse relaxation time of the imaged specimen. In spin-echo sequences, this effect is negated as the excitation is followed by an inversion pulse. The contrast of gradient-echo images natively depends on T2-star effects. However, for T2-star variation to dominate the image contrast, gradient-echo acquisitions are carried out at long repetition and echo times, and at small flip angles.
⌬ Hover to see the diagram legend
Example usage within a process
// Access nii file:
bids_channel['T2starw']['nii']
// → ds-dwi4/sub-01/ses-005/anat/sub-01_ses-005_bp-cspine_T2starw.nii.gz
// Access json file:
bids_channel['T2starw']['json']
// → ds-dwi4/sub-01/ses-005/anat/sub-01_ses-005_bp-cspine_T2starw.json
asl¶
Arterial Spin Labeling
The complete ASL time series stored as a 4D NIfTI file in the original acquisition order, with possible volume types including: control, label, m0scan, deltam, cbf.
⌬ Hover to see the diagram legend
Example usage within a process
// Access nii file:
bids_channel['asl']['nii']
// → asl001/sub-Sub103/perf/sub-Sub103_asl.nii.gz
// Access json file:
bids_channel['asl']['json']
// → asl001/sub-Sub103/perf/sub-Sub103_asl.json
aslcontext¶
Arterial Spin Labeling Context
A TSV file defining the image types for volumes in an associated ASL file.
⌬ Hover to see the diagram legend
Example usage within a process
// Access tsv file:
bids_channel['aslcontext']['tsv']
// → asl001/sub-Sub103/perf/sub-Sub103_aslcontext.tsv
m0scan¶
M0 image
The M0 image is a calibration image, used to estimate the equilibrium magnetization of blood.
⌬ Hover to see the diagram legend
Example usage within a process
// Access nii file:
bids_channel['m0scan']['nii']
// → asl002/sub-Sub103/perf/sub-Sub103_m0scan.nii.gz
// Access json file:
bids_channel['m0scan']['json']
// → asl002/sub-Sub103/perf/sub-Sub103_m0scan.json
mrsref¶
MRS reference acquisition
An MRS acquisition collected to serve as a concentration reference for absolute quantification or as a calibration reference for preprocessing (for example, eddy-current correction).
⌬ Hover to see the diagram legend
Example usage within a process
// Access nii file:
bids_channel['mrsref']['nii']
// → ds-mrs_fmrs/sub-01/mrs/sub-01_task-baseline_mrsref.nii.gz
// Access json file:
bids_channel['mrsref']['json']
// → ds-mrs_fmrs/sub-01/mrs/sub-01_task-baseline_mrsref.json
svs¶
Single-voxel spectroscopy
MRS acquisitions where the detected MR signal is spatially localized to a single volume.
⌬ Hover to see the diagram legend
Example usage within a process
// Access nii file:
bids_channel['svs']['nii']
// → ds-mrs_fmrs/sub-01/mrs/sub-01_task-pain_svs.nii.gz
// Access json file:
bids_channel['svs']['json']
// → ds-mrs_fmrs/sub-01/mrs/sub-01_task-pain_svs.json
events¶
Events
Event timing information from a behavioral task.
⌬ Hover to see the diagram legend
Example usage within a process
// Access tsv file:
bids_channel['events']['tsv']
// → ds-mrs_fmrs/sub-01/mrs/sub-01_task-pain_events.tsv
UNIT1¶
Homogeneous (flat) T1-weighted MP2RAGE image
In arbitrary units (arbitrary).
UNIT1 images are REQUIRED to use this suffix regardless of the method used to
generate them.
Note that although this image is T1-weighted, regions without MR signal will
contain white salt-and-pepper noise that most segmentation algorithms will
fail on.
Therefore, it is important to dissociate it from T1w
.
Please see MP2RAGE
specific notes
in the qMRI appendix for further information.
⌬ Hover to see the diagram legend
Example usage within a process
// Access nii file:
bids_channel['UNIT1']['nii']
// → qmri_mp2rage/sub-1/anat/sub-1_UNIT1.nii
// Access json file:
bids_channel['UNIT1']['json']
// → qmri_mp2rage/derivatives/pymp2rage/sub-1/anat/sub-1_UNIT1.json
epi¶
EPI
The phase-encoding polarity (PEpolar) technique combines two or more Spin Echo EPI scans with different phase encoding directions to estimate the underlying inhomogeneity/deformation map.
⌬ Hover to see the diagram legend
Example usage within a process
// Access nii file:
bids_channel['epi']['nii']
// → ds-dwi3/sub-01/ses-005/fmap/sub-01_ses-005_dir-PA_epi.nii.gz
// Access json file:
bids_channel['epi']['json']
// → ds-dwi3/sub-01/ses-005/fmap/sub-01_ses-005_dir-PA_epi.json
Named Sets¶
Named sets define specific collections of files with predefined names and properties.
MTS¶
Magnetization transfer saturation
This method is to calculate a semi-quantitative magnetization transfer saturation index map. The MTS method involves three sets of anatomical images that differ in terms of application of a magnetization transfer RF pulse (MTon or MToff) and flip angle (Helms et al. 2008).
⌬ Hover to see the diagram legend
Key | Description | Entity-based mapping |
---|---|---|
T1w | T1-weighted image assuming flip-02 is the larger flip angle | flip: flip-02, mtransfer: mt-off |
MTw | Magnetization transfer weighted image of the PD pair. | flip: flip-01, mtransfer: mt-on |
PDw | Proton density weighted image assuming flip-01 is the lower flip angle | flip: flip-01, mtransfer: mt-off |
Example usage within a process
// Access PDw files:
bids_channel['MTS']['PDw']['nii']
// → qmri_mtsat/sub-01/anat/sub-01_flip-1_mt-off_MTS.nii.gz
bids_channel['MTS']['PDw']['json']
// → qmri_mtsat/sub-01/anat/sub-01_flip-1_mt-off_MTS.json
// Access MTw files:
bids_channel['MTS']['MTw']['nii']
// → qmri_mtsat/sub-01/anat/sub-01_flip-1_mt-on_MTS.nii.gz
bids_channel['MTS']['MTw']['json']
// → qmri_mtsat/sub-01/anat/sub-01_flip-1_mt-on_MTS.json
// Access T1w files:
bids_channel['MTS']['T1w']['nii']
// → qmri_mtsat/sub-01/anat/sub-01_flip-2_mt-off_MTS.nii.gz
bids_channel['MTS']['T1w']['json']
// → qmri_mtsat/sub-01/anat/sub-01_flip-2_mt-off_MTS.json
TB1TFL¶
The result of a Siemens tfl_b1_map
product sequence.
This sequence produces two images.
The first image appears like an anatomical image and the second output is a
scaled flip angle map.
⌬ Hover to see the diagram legend
Key | Description | Entity-based mapping |
---|---|---|
anat | Anatomical-like image generated by the tfl_b1_map product sequence | acquisition: acq-anat |
famp | scaled flip angle map | acquisition: acq-famp |
Example usage within a process
// Access anat files:
bids_channel['TB1TFL']['anat']['nii']
// → qmri_tb1tfl/sub-01/fmap/sub-01_acq-anat_TB1TFL.nii.gz
bids_channel['TB1TFL']['anat']['json']
// → qmri_tb1tfl/sub-01/fmap/sub-01_acq-anat_TB1TFL.json
// Access famp files:
bids_channel['TB1TFL']['famp']['nii']
// → qmri_tb1tfl/sub-01/fmap/sub-01_acq-famp_TB1TFL.nii.gz
bids_channel['TB1TFL']['famp']['json']
// → qmri_tb1tfl/sub-01/fmap/sub-01_acq-famp_TB1TFL.json
TB1AFI¶
This method (Yarnykh 2007) calculates a B1+ map from two images acquired at interleaved (two) TRs with identical RF pulses using a steady-state sequence.
⌬ Hover to see the diagram legend
Key | Description | Entity-based mapping |
---|---|---|
tr1 | Image from the first interleaved TR of the AFI sequence | acquisition: acq-tr1 |
tr2 | Image from the second interleaved TR of the AFI sequence | acquisition: acq-tr2 |
Example usage within a process
// Access tr1 files:
bids_channel['TB1AFI']['tr1']['nii']
// → qmri_vfa/sub-01/fmap/sub-01_acq-tr1_TB1AFI.nii.gz
bids_channel['TB1AFI']['tr1']['json']
// → qmri_vfa/sub-01/fmap/sub-01_acq-tr1_TB1AFI.json
// Access tr2 files:
bids_channel['TB1AFI']['tr2']['nii']
// → qmri_vfa/sub-01/fmap/sub-01_acq-tr2_TB1AFI.nii.gz
bids_channel['TB1AFI']['tr2']['json']
// → qmri_vfa/sub-01/fmap/sub-01_acq-tr2_TB1AFI.json
RB1COR¶
Low resolution images acquired by the body coil (in the gantry of the scanner) and the head coil using identical acquisition parameters to generate a combined sensitivity map as described in Papp et al. (2016).
⌬ Hover to see the diagram legend
Key | Description | Entity-based mapping |
---|---|---|
bodyMTw | MTw B1- field from the body coil | acquisition: acq-bodyMTw |
bodyT1w | T1w B1- field from the body coil | acquisition: acq-bodyT1w |
bodyPDw | PDw B1- field from the body coil | acquisition: acq-bodyPDw |
headMTw | MTw B1- field from the head coil | acquisition: acq-headMTw |
headT1w | T1w B1- field from the head coil | acquisition: acq-headT1w |
headPDw | PDw B1- field from the head coil | acquisition: acq-headPDw |
Example usage within a process
// Access bodyMTw files:
bids_channel['RB1COR']['bodyMTw']['nii']
// → qmri_mpm/sub-01/fmap/sub-01_acq-bodyMTw_RB1COR.nii
bids_channel['RB1COR']['bodyMTw']['json']
// → qmri_mpm/sub-01/fmap/sub-01_acq-bodyMTw_RB1COR.json
// Access bodyPDw files:
bids_channel['RB1COR']['bodyPDw']['nii']
// → qmri_mpm/sub-01/fmap/sub-01_acq-bodyPDw_RB1COR.nii
bids_channel['RB1COR']['bodyPDw']['json']
// → qmri_mpm/sub-01/fmap/sub-01_acq-bodyPDw_RB1COR.json
// Access bodyT1w files:
bids_channel['RB1COR']['bodyT1w']['nii']
// → qmri_mpm/sub-01/fmap/sub-01_acq-bodyT1w_RB1COR.nii
bids_channel['RB1COR']['bodyT1w']['json']
// → qmri_mpm/sub-01/fmap/sub-01_acq-bodyT1w_RB1COR.json
// Access headMTw files:
bids_channel['RB1COR']['headMTw']['nii']
// → qmri_mpm/sub-01/fmap/sub-01_acq-headMTw_RB1COR.nii
bids_channel['RB1COR']['headMTw']['json']
// → qmri_mpm/sub-01/fmap/sub-01_acq-headMTw_RB1COR.json
// Access headPDw files:
bids_channel['RB1COR']['headPDw']['nii']
// → qmri_mpm/sub-01/fmap/sub-01_acq-headPDw_RB1COR.nii
bids_channel['RB1COR']['headPDw']['json']
// → qmri_mpm/sub-01/fmap/sub-01_acq-headPDw_RB1COR.json
// Access headT1w files:
bids_channel['RB1COR']['headT1w']['nii']
// → qmri_mpm/sub-01/fmap/sub-01_acq-headT1w_RB1COR.nii
bids_channel['RB1COR']['headT1w']['json']
// → qmri_mpm/sub-01/fmap/sub-01_acq-headT1w_RB1COR.json
Sequential Sets¶
Sequential sets define collections of files organized by BIDS entities.
VFA¶
Variable flip angle
The VFA method involves at least two spoiled gradient echo (SPGR) of steady-state free precession (SSFP) images acquired at different flip angles. Depending on the provided metadata fields and the sequence type, data may be eligible for DESPOT1, DESPOT2 and their variants (Deoni et al. 2005).
⌬ Hover to see the diagram legend
Example usage within a process
// Get number of items in sequential set
bids_channel['VFA']['nii'].size() // → 2
// Access first item
bids_channel['VFA']['nii'][0]
// → qmri_vfa/sub-01/anat/sub-01_flip-1_VFA.nii.gz
bids_channel['VFA']['json'][0]
// → qmri_vfa/sub-01/anat/sub-01_flip-1_VFA.json
// Access second item
bids_channel['VFA']['nii'][1]
// → qmri_vfa/sub-01/anat/sub-01_flip-2_VFA.nii.gz
bids_channel['VFA']['json'][1]
// → qmri_vfa/sub-01/anat/sub-01_flip-2_VFA.json
IRT1¶
Inversion recovery T1 mapping
The IRT1 method involves multiple inversion recovery spin-echo images acquired at different inversion times (Barral et al. 2010).
⌬ Hover to see the diagram legend
Example usage within a process
// Get number of items in sequential set
bids_channel['IRT1']['nii'].size() // → 4
// Access first item
bids_channel['IRT1']['nii'][0]
// → qmri_irt1/sub-01/anat/sub-01_inv-01_IRT1.nii.gz
bids_channel['IRT1']['json'][0]
// → qmri_irt1/sub-01/anat/sub-01_inv-01_IRT1.json
// Access second item
bids_channel['IRT1']['nii'][1]
// → qmri_irt1/sub-01/anat/sub-01_inv-02_IRT1.nii.gz
bids_channel['IRT1']['json'][1]
// → qmri_irt1/sub-01/anat/sub-01_inv-02_IRT1.json
TB1DAM¶
The double-angle B1+ method (Insko and Bolinger 1993) is based on the calculation of the actual angles from signal ratios, collected by two acquisitions at different nominal excitation flip angles. Common sequence types for this application include spin echo and echo planar imaging.
⌬ Hover to see the diagram legend
Example usage within a process
// Get number of items in sequential set
bids_channel['TB1DAM']['nii'].size() // → 2
// Access first item
bids_channel['TB1DAM']['nii'][0]
// → qmri_mtsat/sub-01/fmap/sub-01_flip-1_TB1DAM.nii.gz
bids_channel['TB1DAM']['json'][0]
// → qmri_mtsat/sub-01/fmap/sub-01_flip-1_TB1DAM.json
// Access second item
bids_channel['TB1DAM']['nii'][1]
// → qmri_mtsat/sub-01/fmap/sub-01_flip-2_TB1DAM.nii.gz
bids_channel['TB1DAM']['json'][1]
// → qmri_mtsat/sub-01/fmap/sub-01_flip-2_TB1DAM.json
MEGRE¶
Multi-echo Gradient Recalled Echo
Anatomical gradient echo images acquired at different echo times. Please note that this suffix is not intended for the logical grouping of images acquired using an Echo Planar Imaging (EPI) readout.
⌬ Hover to see the diagram legend
Example usage within a process
// Get number of items in sequential set
bids_channel['MEGRE']['nii'].size() // → 8
// Access first item
bids_channel['MEGRE']['nii'][0]
// → qmri_megre/sub-01/anat/sub-01_echo-01_MEGRE.nii.gz
bids_channel['MEGRE']['json'][0]
// → qmri_megre/sub-01/anat/sub-01_echo-01_MEGRE.json
// Access second item
bids_channel['MEGRE']['nii'][1]
// → qmri_megre/sub-01/anat/sub-01_echo-02_MEGRE.nii.gz
bids_channel['MEGRE']['json'][1]
// → qmri_megre/sub-01/anat/sub-01_echo-02_MEGRE.json
MESE¶
Multi-echo Spin Echo
The MESE method involves multiple spin echo images acquired at different echo times and is primarily used for T2 mapping. Please note that this suffix is not intended for the logical grouping of images acquired using an Echo Planar Imaging (EPI) readout.
⌬ Hover to see the diagram legend
Example usage within a process
// Get number of items in sequential set
bids_channel['MESE']['nii'].size() // → 32
// Access first item
bids_channel['MESE']['nii'][0]
// → qmri_mese/sub-01/anat/sub-01_echo-01_MESE.nii.gz
bids_channel['MESE']['json'][0]
// → qmri_mese/sub-01/anat/sub-01_echo-01_MESE.json
// Access second item
bids_channel['MESE']['nii'][1]
// → qmri_mese/sub-01/anat/sub-01_echo-02_MESE.nii.gz
bids_channel['MESE']['json'][1]
// → qmri_mese/sub-01/anat/sub-01_echo-02_MESE.json
TB1SRGE¶
Saturation-prepared with 2 rapid gradient echoes (SA2RAGE) uses a ratio of two saturation recovery images with different time delays, and a simulated look-up table to estimate B1+ (Eggenschwiler et al. 2011). This sequence can also be used in conjunction with MP2RAGE T1 mapping to iteratively improve B1+ and T1 map estimation (Marques & Gruetter 2013).
⌬ Hover to see the diagram legend
Example usage within a process
// Get number of items in sequential set
bids_channel['TB1SRGE']['nii'].size() // → 2
// Access first item
bids_channel['TB1SRGE']['nii'][0]
// → ['qmri_sa2rage/sub-01/fmap/sub-01_flip-1_inv-1_TB1SRGE.nii.gz']
bids_channel['TB1SRGE']['json'][0]
// → ['qmri_sa2rage/sub-01/fmap/sub-01_flip-1_inv-1_TB1SRGE.json']
// Access second item
bids_channel['TB1SRGE']['nii'][1]
// → ['qmri_sa2rage/sub-01/fmap/sub-01_flip-2_inv-2_TB1SRGE.nii.gz']
bids_channel['TB1SRGE']['json'][1]
// → ['qmri_sa2rage/sub-01/fmap/sub-01_flip-2_inv-2_TB1SRGE.json']
TB1EPI¶
This B1+ mapping method (Jiru and Klose 2006) is based on two EPI readouts to acquire spin echo (SE) and stimulated echo (STE) images at multiple flip angles in one sequence, used in the calculation of deviations from the nominal flip angle.
⌬ Hover to see the diagram legend
Example usage within a process
// Get number of items in sequential set
bids_channel['TB1EPI']['nii'].size() // → 2
// Access first item
bids_channel['TB1EPI']['nii'][0]
// → ['qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-01_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-02_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-03_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-04_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-05_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-06_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-07_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-08_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-09_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-10_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-11_TB1EPI.nii']
bids_channel['TB1EPI']['json'][0]
// → ['qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-01_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-02_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-03_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-04_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-05_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-06_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-07_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-08_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-09_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-10_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-1_flip-11_TB1EPI.json']
// Access second item
bids_channel['TB1EPI']['nii'][1]
// → ['qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-01_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-02_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-03_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-04_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-05_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-06_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-07_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-08_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-09_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-10_TB1EPI.nii', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-11_TB1EPI.nii']
bids_channel['TB1EPI']['json'][1]
// → ['qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-01_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-02_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-03_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-04_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-05_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-06_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-07_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-08_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-09_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-10_TB1EPI.json', 'qmri_mpm/sub-01/fmap/sub-01_echo-2_flip-11_TB1EPI.json']
MP2RAGE¶
Magnetization Prepared Two Gradient Echoes
The MP2RAGE method is a special protocol that collects several images at different flip angles and inversion times to create a parametric T1map by combining the magnitude and phase images (Marques et al. 2010).
⌬ Hover to see the diagram legend
Example usage within a process
// Get number of items in sequential set
bids_channel['MP2RAGE']['nii'].size()
// Access first item
bids_channel['MP2RAGE']['nii'][0]
bids_channel['MP2RAGE']['json'][0]
Mixed Sets¶
Mixed sets combine named groups with sequential organization within each group.
MPM¶
Multi-parametric Mapping
The MPM approaches (a.k.a hMRI) involves the acquisition of highly-similar anatomical images that differ in terms of application of a magnetization transfer RF pulse (MTon or MToff), flip angle and (optionally) echo time and magnitue/phase parts (Weiskopf et al. 2013). See here for suggested MPM acquisition protocols.
⌬ Hover to see the diagram legend
Named Group | Description | Entity-based mapping |
---|---|---|
MTw | Magnetization transfer weighted images | acquisition: acq-MTw, flip: flip-1, mtransfer: mt-on |
PDw | Proton density weighted images | acquisition: acq-PDw, flip: flip-1, mtransfer: mt-off |
T1w | T1-weighted images | acquisition: acq-T1w, flip: flip-2, mtransfer: mt-off |
Required groups: None
Example usage within a process
// Access MTw group:
bids_channel['MPM']['MTw']['nii'].size() // → 6
bids_channel['MPM']['MTw']['nii'][0]
// → qmri_mpm/sub-01/anat/sub-01_acq-MTw_echo-1_flip-1_mt-on_MPM.nii
bids_channel['MPM']['MTw']['json'][0]
// → qmri_mpm/sub-01/anat/sub-01_acq-MTw_echo-1_flip-1_mt-on_MPM.json
// Access second echo in MTw:
bids_channel['MPM']['MTw']['nii'][1]
// → qmri_mpm/sub-01/anat/sub-01_acq-MTw_echo-2_flip-1_mt-on_MPM.nii
bids_channel['MPM']['MTw']['json'][1]
// → qmri_mpm/sub-01/anat/sub-01_acq-MTw_echo-2_flip-1_mt-on_MPM.json
// Access PDw group:
bids_channel['MPM']['PDw']['nii'].size() // → 8
bids_channel['MPM']['PDw']['nii'][0]
// → qmri_mpm/sub-01/anat/sub-01_acq-PDw_echo-1_flip-1_mt-off_MPM.nii
bids_channel['MPM']['PDw']['json'][0]
// → qmri_mpm/sub-01/anat/sub-01_acq-PDw_echo-1_flip-1_mt-off_MPM.json
// Access second echo in PDw:
bids_channel['MPM']['PDw']['nii'][1]
// → qmri_mpm/sub-01/anat/sub-01_acq-PDw_echo-2_flip-1_mt-off_MPM.nii
bids_channel['MPM']['PDw']['json'][1]
// → qmri_mpm/sub-01/anat/sub-01_acq-PDw_echo-2_flip-1_mt-off_MPM.json
// Access T1w group:
bids_channel['MPM']['T1w']['nii'].size() // → 8
bids_channel['MPM']['T1w']['nii'][0]
// → qmri_mpm/sub-01/anat/sub-01_acq-T1w_echo-1_flip-2_mt-off_MPM.nii
bids_channel['MPM']['T1w']['json'][0]
// → qmri_mpm/sub-01/anat/sub-01_acq-T1w_echo-1_flip-2_mt-off_MPM.json
// Access second echo in T1w:
bids_channel['MPM']['T1w']['nii'][1]
// → qmri_mpm/sub-01/anat/sub-01_acq-T1w_echo-2_flip-2_mt-off_MPM.nii
bids_channel['MPM']['T1w']['json'][1]
// → qmri_mpm/sub-01/anat/sub-01_acq-T1w_echo-2_flip-2_mt-off_MPM.json
Special Sets¶
Special sets are special cases that do not fit into the other categories.
dwi_fullreverse¶
Additional grouping logic for dwi
⌬ Hover to see the diagram legend
Key | Description | Entity-based mapping |
---|---|---|
ap | No description | direction: dir-AP |
pa | No description | direction: dir-PA |
Example usage within a process
// Access ap files:
bids_channel['dwi_fullreverse']['ap']['nii']
// → ds-dwi4/sub-01/ses-005/dwi/sub-01_ses-005_dir-AP_dwi.nii.gz
bids_channel['dwi_fullreverse']['ap']['json']
// → ds-dwi4/sub-01/ses-005/dwi/sub-01_ses-005_dir-AP_dwi.json
// Access pa files:
bids_channel['dwi_fullreverse']['pa']['nii']
// → ds-dwi4/sub-01/ses-005/dwi/sub-01_ses-005_dir-PA_dwi.nii.gz
bids_channel['dwi_fullreverse']['pa']['json']
// → ds-dwi4/sub-01/ses-005/dwi/sub-01_ses-005_dir-PA_dwi.json
sbref_fullreverse¶
Additional grouping logic for sbref
⌬ Hover to see the diagram legend
Key | Description | Entity-based mapping |
---|---|---|
ap | No description | direction: dir-AP |
pa | No description | direction: dir-PA |
Example usage within a process
// Access ap files:
bids_channel['sbref_fullreverse']['ap']['nii']
// → ds-dwi4/sub-01/ses-005/dwi/sub-01_ses-005_dir-AP_sbref.nii.gz
bids_channel['sbref_fullreverse']['ap']['json']
// → ds-dwi4/sub-01/ses-005/dwi/sub-01_ses-005_dir-AP_sbref.json
// Access pa files:
bids_channel['sbref_fullreverse']['pa']['nii']
// → ds-dwi4/sub-01/ses-005/dwi/sub-01_ses-005_dir-PA_sbref.nii.gz
bids_channel['sbref_fullreverse']['pa']['json']
// → ds-dwi4/sub-01/ses-005/dwi/sub-01_ses-005_dir-PA_sbref.json
epi_fullreverse¶
Additional grouping logic for epi
⌬ Hover to see the diagram legend
Key | Description | Entity-based mapping |
---|---|---|
ap | No description | direction: dir-AP |
pa | No description | direction: dir-PA |
Example usage within a process
bids_channel['epi_fullreverse']['ap']['nii']
bids_channel['epi_fullreverse']['ap']['json']
bids_channel['epi_fullreverse']['pa']['nii']
bids_channel['epi_fullreverse']['pa']['json']
MP2RAGE_multiecho¶
Additional grouping logic for MP2RAGE
⌬ Hover to see the diagram legend
Example usage within a process
// Multiple entities organized by: inversion, echo
// First dimension: inversion, Second dimension: echo
// Get size of first dimension (inversion)
bids_channel['MP2RAGE_multiecho']['nii'].size()
// Get size of second dimension (echo) for first inversion
bids_channel['MP2RAGE_multiecho']['nii'][0].size()
// Access first item
bids_channel['MP2RAGE_multiecho']['nii'][0][0]
bids_channel['MP2RAGE_multiecho']['json'][0][0]
This documentation is automatically generated from bids2nf.yaml
.
- Helms, G., Dathe, H., Kallenberg, K., & Dechent, P. (2008). High‐resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magnetic Resonance in Medicine, 60(6), 1396–1407. 10.1002/mrm.21732
- Yarnykh, V. L. (2006). Actual flip‐angle imaging in the pulsed steady state: A method for rapid three‐dimensional mapping of the transmitted radiofrequency field. Magnetic Resonance in Medicine, 57(1), 192–200. 10.1002/mrm.21120
- Papp, D., Callaghan, M. F., Meyer, H., Buckley, C., & Weiskopf, N. (2015). Correction of inter‐scan motion artifacts in quantitative R1 mapping by accounting for receive coil sensitivity effects. Magnetic Resonance in Medicine, 76(5), 1478–1485. 10.1002/mrm.26058
- Deoni, S. C. L., Peters, T. M., & Rutt, B. K. (2004). High‐resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magnetic Resonance in Medicine, 53(1), 237–241. 10.1002/mrm.20314
- Barral, J. K., Gudmundson, E., Stikov, N., Etezadi‐Amoli, M., Stoica, P., & Nishimura, D. G. (2010). A robust methodology for in vivo T1 mapping. Magnetic Resonance in Medicine, 64(4), 1057–1067. 10.1002/mrm.22497
- Insko, E. K., & Bolinger, L. (1993). Mapping of the Radiofrequency Field. Journal of Magnetic Resonance, Series A, 103(1), 82–85. 10.1006/jmra.1993.1133
- Eggenschwiler, F., Kober, T., Magill, A. W., Gruetter, R., & Marques, J. P. (2011). SA2RAGE: A new sequence for fast B1+‐mapping. Magnetic Resonance in Medicine, 67(6), 1609–1619. 10.1002/mrm.23145
- Marques, J. P., & Gruetter, R. (2013). New Developments and Applications of the MP2RAGE Sequence - Focusing the Contrast and High Spatial Resolution R1 Mapping. PLoS ONE, 8(7), e69294. 10.1371/journal.pone.0069294
- Jiru, F., & Klose, U. (2006). Fast 3D radiofrequency field mapping using echo‐planar imaging. Magnetic Resonance in Medicine, 56(6), 1375–1379. 10.1002/mrm.21083
- Marques, J. P., Kober, T., Krueger, G., van der Zwaag, W., Van de Moortele, P.-F., & Gruetter, R. (2010). MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage, 49(2), 1271–1281. 10.1016/j.neuroimage.2009.10.002
- Weiskopf, N., Suckling, J., Williams, G., Correia, M. M., Inkster, B., Tait, R., Ooi, C., Bullmore, E. T., & Lutti, A. (2013). Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: a multi-center validation. Frontiers in Neuroscience, 7. 10.3389/fnins.2013.00095